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Abstract

Concern over limited extravehicular and intravehicular activitiy time has

increased the interest in performing in-space assembly and construction op-

erations with automated robotic systems. A technique being considered at

Langley Research Center is a supervised-autonomy approach, which can be

monitored by an Earth-based supervisor that intervenes only when the au-

tomated system encounters a problem. A test-bed to support evaluation of

the hardware and software requirements for supervised-autonomy assembly

methods has been developed. This report describes the design of the software

systemnecessary to support the assembly process. The system is implemented

and successfully assembles and disassembles a planar tetrahedral truss struc-

ture. The software is hierarchical and supports both automated assembly

operations and supervisor error-recovery procedures, including the capability

to pause and reverse any operation. The software design serves as a model

for the development of software for more sophisticated automated systems

and as a test-bed for evaluation of new concepts and hardware components.

Introduction

A number of future space missions will require
large truss structures, some of which will support

functional surfaces such as antennas, re
ectors, and
aerobrakes. Two examples of such missions are
shown in �gure 1. Figure 1(a) is an astronomi-

cal observatory, and �gure 1(b) is a Mars mission
vehicle with a truss-supported aerobrake. Consid-
erable e�ort has been expended during the past
10 years toward establishing a capability of assem-

bling large space structures on orbit (refs. 1 and 2).
A shuttle 
ight experiment of a large truss structure
(ref. 3) and recent truss-supported re
ector designs
(ref. 4) are aimed at astronaut assembly. However,

current concern over limited astronaut EVA (extra-
vehicular activity) and IVA (intravehicular activity)
time (ref. 5) has increased the interest in performing

in-space assembly and construction with automated,
robotic systems. One particularly attractive alterna-
tive utilizes the operator as a supervisor or system
monitor, called upon only when the robotic system

requires intervention or assistance. This mode of op-
eration, known as supervised autonomy, eliminates
planned EVA for construction and reduces IVA. Su-

pervised autonomy has the advantage that it can be
performed from any location, including the ground,
since it does not require the performance of time-
critical active functions by the operator.

To date, very little e�ort has been directed to-
ward the development of automated robotic methods

for large truss structures. Langley Research Center
(LaRC) has developed a unique facility to support
the �rst detailed study of automated structural as-

sembly (ref. 6). The interdisciplinary e�ort focuses
on gaining practical experience in the automated as-

sembly of large, generic, truss-structure hardware de-
signed for robotic operations.

The objective of this report is to describe the
requirements and design of the software that per-
forms the automated assembly of the truss structure

and to discuss the interface and interaction between
the software program, the system hardware, and the
operator. An initial version of the automated as-

sembly system has been developed and is currently
operational. Considerable experience has been ac-
cumulated in the assembly and disassembly of a
102-member tetrahedral truss structure (refs. 6 to 8).

The assembly system components are described, and
a narrative of the assembly process is given, to serve
as a basis for the description of the software and its

functions. The actual implementation of the design
is discussed in appendix A. Finally, an evaluation of
the software system operation and experience is pre-
sented. The purpose of the evaluation is to discuss

the success of the design in satisfying the system re-
quirements. A glossary of terms relative to the sub-
ject matter discussed in this paper is contained in

appendix B.

Symbols and Abbreviations

AP approach point

AP CAN canister approach point

CAP capture locations (CAP1,
CAP2)

CLOSE, LOCK, individual actuator
EXTEND commands

GP grasp point

GP CAN canister grasp point
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INSTALL, REMOVE, assembly functions
ACQUIRE, PROP

IP transition point

NASREM NASA/NBS standard

reference model

Pitch, Roll, Yaw pitch, roll, and yaw

orientations of robot arm

R radius

REM removal locations (REM1,
REM2)

STORAGE storage-tray grasp point

STORAGE AP approach point to

storage-tray canister

TRAY working-tray grasp point

TRAY AP approach point to
working-tray canister

TRIPOD capture point for pyramid
installation

X;Y; Z x, y, and z positions of
robot arm

x; y; z coordinate locations
along x-, y-, and z-axes

� angle of rotation, deg

Assembly Facility Hardware

Figure 2(a) is a schematic of the automated as-

sembly facility, and �gure 2(b) is a photograph of
the actual hardware system. The facility consists of
a robot arm, a motion base, a truss, an end e�ector,

and strut storage trays. It uses commercially avail-
able equipment so that it can be easily modi�ed. The
hardware system is a ground-based research tool de-
signed to permit evaluation of assembly techniques,

strut joining and end-e�ector components, computer
software architecture, and operator interface require-
ments that are necessary for automated in-space op-

erations. A more complete description of the facility
hardware and performance characteristics is given in
references 9 to 11.

Robot Arm

The robot arm is a six-degree-of-freedom indus-
trial manipulator selected for its reach envelope, pay-
load capacity, positioning repeatability, and reliabil-

ity. The robot-arm computer is based on a 68000

microprocessor, and all robot-arm motions are pro-
grammed in a modi�ed BASIC programming lan-

guage supplied by the manufacturer.

Motion Base

The motion base includes a linear translational

carriage and a rotating turntable. The robot arm is
mounted on the carriage, which has approximately
20 ft of travel in both the x and y directions, with

a positioning accuracy of 0.002 in. The truss struc-
ture is assembled on a rotating turntable capable of
six revolutions of travel and a positioning accuracy
of 0.01 in. at a radial distance of 20 ft (0.0024�).

Motion-base drive motors on the three axes are
commanded by an Intel 80286 microprocessor-based
indexer.

Truss

A planar tetrahedral truss, such as the model
shown in �gure 3, was selected for initial assembly

studies because it is representative of the type of truss
structures required for large antennas, re
ectors, and
aerobrakes. The truss is speci�cally designed for

automated assembly and includes regular hexagonal
rings. Core struts are those that connect the top face
to the bottom face. All struts are nominally 6.6 ft
long and 1 in. in diameter. The complete structure

has 102 struts and 31 nodes. Assembly begins by
connecting struts to three nodes that are premounted
on the motion-base turntable.

The truss node and joint connectors are shown
in �gure 4. Two joint connectors are bonded to a
graphite-epoxy tube to form a strut. The joint has

a connector section which, during assembly, is in-
serted into a node-mounted receptacle. A locking
nut is turned by the end e�ector to draw the connec-

tor plunger toward the connector face of the strut,
securing the joint. The alignment and grasp adapter
is used to grip the strut and align it precisely with
the end e�ector.

End E�ector

The end e�ector is a specialized tool mounted on

the robot arm that performs all strut installation and
removal operations. Figure 5(a) is a schematic of
the end e�ector, and �gure 5(b) is a photograph of
the end e�ector and its components. The strut is

grasped by a set of strut holders that close around
the alignment and grasp adapters (�gs. 4 and 5) that
are bonded to the strut tube. The strut holders are

mounted on a platform that is extended for insertion
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of the strut into the node receptacles. A strut is in-
stalled into the truss by moving the end e�ector to

a position where the receptacle �ngers (�g. 5(b)) are
able to grapple the node receptacle. Actuators close
the �ngers around the node receptacle and passively
align the end e�ector and strut with the node re-

ceptacle. After alignment, the platform is extended
and inserts both joint connectors into the receptacles,
where they are held while the locking nuts are tight-

ened with nut drivers on the end e�ector. The strut
holders are unlatched and the platform is retracted.
The receptacle �ngers are then opened to release the
structure.

All end-e�ector components and actuators are
equipped with simple sensors, such as microswitches
and linear potentiometers, so that the computer
program can monitor the operations and alert the

operator if a problem occurs. Small video cameras
are mounted on each end of the end e�ector to permit
operator monitoring of component functions.

A six-axis force-torque sensor (FTS) is mounted

on the wrist of the robot arm to measure forces and
moments acting on the end e�ector. The output of
the FTS is used to command small robot-arm move-

ments in a direction that will \zero" the measured
forces and moments. This movement is used to re-
duce the loads on the end e�ector and to enable the
end-e�ector components to operate freely.

Trays

The truss struts are stored in nine trays, which

are stacked in the working canister directly behind
the robot arm (�gs. 2(a) and 2(b)). Empty trays are
transferred by picking them up with the end e�ector

and moving them to the storage canister, which is
located on one side of the robot arm. The struts
are removed from the tray by positioning the end
e�ector over the strut, extending the platform so that

the strut holders contact the alignment and grasp
adapters, and latching the strut to the end e�ector.
The platform is then retracted to withdraw the strut

from the tray. Each tray has cylindrical handles on
both ends; these handles are �tted with positioning
and alignment adapters, which allow the end e�ector
to pick up empty trays from the working canister and

transfer them to the storage canister.

Assembly Process

The assembly process begins when the end e�ec-
tor acquires the �rst strut from the top tray in the
working canister. Once the strut is acquired, the

motion base is positioned so that the robot arm can

connect the strut to the structure. The robot arm,
moving through a sequence of predetermined points,

positions the strut at its point of installation or grasp
point. The end e�ector then inserts and locks the
strut into place. Finally, the robot arm returns to the
working canister to retrieve another strut. This basic

operational sequence is followed for the installation
of all struts. Each part of the sequence is detailed in
the sections that follow.

Acquiring a Strut From the Tray

Each strut has a preassigned tray number and a

slot location. The end e�ector is positioned at the
canister approach point (a prede�ned point at the
top of the working canister), which is directly over
the desired strut in the tray. Receptacle �ngers are

closed to prevent collisions with preattached nodes
on adjacent struts remaining in the tray. The end ef-
fector is lowered to the canister grasp point (the level
of the tray containing the strut), so that extending

the platform causes the strut holders to lightly con-
tact the strut alignment and grasp adapters. When
the platform extends, the force-torque algorithm bal-

ances the forces and moments acting on the end e�ec-
tor while slowly applying a maximum of 20 lbf in the
downward direction to close the strut holders. After
the strut holders are latched, the forces and torques

are rebalanced. The platform is then retracted, and
the strut is lifted from the working canister. From
the working canister grasp point, the strut is carried

to the canister approach point, where the receptacle
�ngers are opened in preparation for the installation
operation.

Motion-Base Moves

Associated with the installation of each strut are
the carriage and turntable positions (x, y, and �)

required for installation. The current carriage
and turntable positions, the required carriage and
turntable positions for the strut being installed, and
the status of the structural assembly are used to de-

termine if the carriage and/or robot arm will collide
with any struts that are currently assembled. The
motion-base repositioning commands can be per-

formed in any order. All motion-base moves are per-
formed with the robot arm positioned at the can-
ister approach point to minimize the distance the
robot arm extends toward the truss; this position-

ing reduces chances for collision. The motion-base
collision-avoidance algorithm is described in detail
in the section \Motion-Base and Collision-Avoidance

Design."
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Robot-Arm Paths

The robot arm traverses a predetermined path to

deliver the strut to the proper location and orienta-
tion in the structure. There are three strut instal-
lation cases: direct, capture sequence, and pyramid

completion. For direct installation, the end e�ector
and strut are carried directly to the grasp point, a
predetermined location where the strut can be in-
stalled into the structure. Direct installation entails

either the insertion of a strut between two �xed nodes
already in the structure or the installation of a strut
with a preattached node at one end. For struts with

preattached nodes, the end e�ector only operates the
receptacle �ngers and locking component at one end
and leaves the strut-node combination cantilevered
from the �xed node to which it is installed in the

structure. The installation of a strut with a pre-
attached node creates the capture-sequence installa-
tion, which requires the end e�ector to install a strut
between the free end of a cantilevered strut (de
ected

by gravity) and another node in the structure. For
this case, the end e�ector must be positioned so that
the receptacle �ngers on one end grasp and capture

the cantilevered node. The robot arm is then moved
so that the receptacle �ngers on the opposite end can
grasp the node in the structure and so that both ends
of the strut can be inserted and locked into place.

The pyramid-completion installation case per-

forms the installation of a third strut into a pyra-
mid substructure. This installation is similar to the
capture-sequence installation, except that the node
being captured already connects two struts. For the

pyramid-completion installation, the de
ections due
to gravity are not as large as in the capture-sequence
installation. The robot arm is again moved to the

grasp point after node capture of the two connected
struts where the strut is inserted; this move com-
pletes the pyramid con�guration.

In addition to the three installation cases, there
are two removal cases that are necessary for dis-
assembly: free and direct. The free removal case

involves cantilevered struts with preattached nodes
that are de
ected as a result of gravity. The robot
arm must move to a predetermined point and close

the receptacle �ngers to capture the cantilevered end.
It then continues to a second predetermined point
to avoid node receptacles of installed struts before
proceeding to the grasp point, where the strut is

removed from the structure. The direct removal case
applies to all other struts. The robot arm traverses
a straight path directly to the grasp point. The end

e�ector receives commands during the path sequence

to perform tasks such as closing receptacle �ngers to
capture nodes at the proper locations.

End-E�ector Operations

When the robot arm reaches the grasp point for
the strut, control is transferred to the end e�ector. A

strut installation includes closing the receptacle �n-
gers on the node receptacles, extending the platform
to insert the strut into the receptacles, locking the

strut into place, unlatching the strut from the end
e�ector, retracting the platform, and opening the re-
ceptacle �ngers. Sensors are monitored after each
step, and the sequence does not proceed unless the

operation is successful.

System Software Requirements

The automated assembly system software was de-

veloped to support projected assembly system re-
quirements. These requirements were generated by
an interdisciplinary group of hardware designers, pro-

grammers, engineers, and prospective users of the
system. The participation of a wide range of dis-
ciplines resulted in a software design that has not
changed appreciably during the evolution of the sys-

tem. These system requirements are discussed fur-
ther in the following section, and the requirements
for the three devices|motion base, robot arm, and

end e�ector|are discussed in subsequent sections.

Overall Requirements

The overall system requirements are as follows:

(1) to assemble and disassemble the tetrahedral truss
in an automated mode; (2) to provide su�cient in-
formation displays and control capability to support
a supervised autonomy mode of operation; (3) to in-

terface with advanced systems, such as planners; and
(4) to accommodate assembly system hardware and
procedural upgrades.

The requirement to provide the capability for
a fully automated assembly and disassembly estab-
lished the need to know the predetermined condi-

tions that direct the assembly process, the current
state of all system hardware devices, and the current
state and location of every strut in the truss struc-

ture. Predetermined conditions include the geometry
of the structure, path sequences, strut storage infor-
mation, motion-base moves for strut installation, and
potential obstructions during motion-base moves.

The software must include algorithms and procedures
for gravity-de
ected strut capture, motion-base col-
lision avoidance, and error recovery. When perform-

ing the assembly task, the software must command
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and sequence the motion base, robot arm, and end-

e�ector hardware, and must provide interfaces for the

supervisor. Because each of the system hardware de-

vices is an independent subsystem that must be co-

ordinated during assembly operations, the software

design must accommodate a distributed architecture

to provide local device component control.

The software requirements are driven by a need

for a user to monitor and e�ectively manage the

operation of the automated system. The role of

the system software user and the user interface is

therefore de�ned as follows:

1. The user is considered to be a supervisor be-

cause system operation is primarily in an au-

tomated mode.

2. Supervisor interaction is required only for er-

ror recovery.

3. Supervisor monitoring is supported with as

much task and status information as possible.

This information must be clear and concise.

4. The supervisor may intervene at any time to

change tasks or request information. This

intervention includes pausing the automated

sequences to look at video displays or assembly

details before either resuming or reversing the

task.

5. The supervisor has override capability over all

automated functions.

6. The supervisor is not responsible for data and

status updates resulting from commanded ac-

tions. These updates occur automatically.

7. A secondary manual or checkout mode allows

the supervisor access to all levels of commands

and data so that all automated functions can

be duplicated and analyzed. System status

checks are performed prior to execution of

all supervisor commands to avoid damaging

actions. Access to the lower command lev-

els is restricted to experienced or authorized

supervisors.

8. Three modes of supervisor input are required:

keyboard, command �le, and assembly-

sequence �le. The keyboard mode requires

the supervisor to enter each command man-

ually. The command-�le mode alleviates some

typing by allowing the supervisor to create

a �le of the actual commands that would be

entered interactively. The command-�le exe-

cution should parallel the performance of the

system in the keyboard mode. The assembly-

sequence �le is a higher level command �le. It

contains general assembly and disassembly se-

quences, including an ordered list of the struts

to be installed or removed. The system trans-

lates the assembly-sequence �le into a com-

mand �le of the actual system commands. The

system allows the supervisor to perform on-

line creation, modi�cation, and error recovery

of the command- and assembly-sequence �les.

The third overall requirement is the ability to

interface with advanced systems. Under current

consideration are knowledge-based, expert system

control of assembly functions, path-planning tools for

the robot arm, and machine vision to provide robust

system operation.

The software systemmust accommodate assembly

system hardware, computer hardware, and procedu-

ral upgrades that result from operational experience.

One procedural upgrade that became apparent dur-

ing the development process was the need to reverse

the assembly process after a pause or unresolved er-

ror. This capability improves supervisor con�dence

in the automated system operations and provides a

powerful error-recovery technique. When an error

cannot be corrected, the system automatically ini-

tiates a reverse sequence of commands and relieves

the supervisor of having to remember the proper se-

quence. This reverse sequence imposes a signi�cant

burden on the software, however, because the reverse

sequence is not necessarily the exact opposite of the

forward sequence. An example of the ability to ac-

commodate new hardware involves the incorporation

of new end e�ectors for additional assembly tasks and

advanced operations.

Motion-Base Requirements

The motion base must position the carriage and

rotating turntable to the correctx, y , and � positions.

The x, y, and � positions are expressed as either

absolute locations or moves relative to the current

position. The x, y, and � moves may execute in

any order, and each move is veri�ed before the next

move is begun. The motion base should be able

to move to prede�ned locations or receive a direct

move instruction from the supervisor. Before any

movement of the motion bases, collision-avoidance

logic must determine the order of moves that will

keep the motion base from hitting the assembled

struts.

A pause option for the motion base includes

the ability to manually adjust the current position.

When reversing the motion base, the forward se-

quence is retraced.
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Robot-Arm Requirements

The robot arm is required to traverse pre-
determined paths for strut installation and removal,
for moving the trays to and from the storage canis-
ter, and for changing the end e�ector. The robot-

arm program must be able to access the end-e�ector
commands directly to avoid obstacles and perform
capture tasks.

For the strut paths, the robot arm is required to
automatically move sequentially in either direction

through a series of intermediate positions that de-
pend on the strut installation position in the truss.
There are 19 unique paths used during the assembly

of the truss structure. The software must be able to
select the correct path for each strut, including the
capture of gravity-de
ected cantilevered struts.

The robot-arm reverse is not always the opposite
of the forward sequence for the strut paths. Details

of the reverse are discussed in the section \Robot-
Arm Path Design." The reverse sequences for tray
operations and end-e�ector changes are exactly op-

posite of their forward sequences. Aswith the motion
base, the pause option includes the capability for the
supervisor to adjust the robot-arm position.

End-E�ector Requirements

The end-e�ector software must be able to gen-
erate sequences of actuator commands to perform

four basic assembly functions: install, remove, ac-
quire, and drop. The system must be able to ac-
cess the actuator commands, monitor sensor outputs,

and perform sensor con
ict checking after each actu-
ator command is executed. The software design must
be able to support various end e�ectors, such as the
addition of a panel end e�ector for future assembly

operations.

End-e�ector error conditions detected by the sen-
sors are displayed for the supervisor. The super-
visor has the option to manipulate the end-e�ector
actuators directly, reposition the robot arm to permit

the actuator to function properly, continue execution
when the error is not deemed serious enough to war-
rant action, or abort error correction and allow the

system to reverse. For the end-e�ector functions, the
reverse is not always the exact opposite of the for-
ward sequence. The error-recovery software provides
the option of executing automatically or manually.

The end-e�ector software must provide direct access
to the robot-arm commands to reposition the robot
arm or to balance the forces and torques acting on

the end e�ector.

System Software Design

Although the assembly system is intended to op-

erate in a fully automated mode, it is imperative that
the supervisor be provided with appropriate internal
information and have su�cient command access and

authority to deal with assembly problems. For this
reason, the automated assembly system software de-
sign is approached primarily from the supervisor's
viewpoint. A command hierarchy makes the control

process simple and orderly. The result is a modular
software structure that coincides with the hierarchi-
cal nature of automated operations. The following

sections provide the details of the software design.
Appendix A provides some insight into the actual
implementation of the design.

Design Overview

Design Layout

Figure 6 shows the design layout of the automated
assembly program. It comprises four basic levels:

administrative, assembly, device, and component.
Because of the natural hierarchy of the assembly pro-
cess, a top-down design philosophy is used; this phi-

losophy causes the highest level commands to appear
�rst and successively decomposes to the lowest-level
component commands. The software design process
is based upon the assembly sequence described pre-

viously and the requirement that the supervisor have
access to all levels of detail.

The administrative level is involved with the pre-

liminary setup of the system. It allows the supervisor
to examine and modify data and systemoptions. The
command and assembly �les can be selected, created,
and modi�ed. Also, the supervisor gains access to the

lower levels of the system through the administrative
level.

The assembly level re
ects the automated aspect

of the system. At this level, the software manages
all the devices, data veri�cation, and error recovery.
Command operations at this level for assembly and
disassembly of the truss are all automated. This level

interfaces with a proposed automated task sequence
planner. The standard operating mode occurs at the
administrative and assembly levels.

The device level gives the supervisor access to
each individual device and to the functions the de-
vice performs. To obtain and install a strut requires
action by three separate devices: the motion base,

the robot arm, and the end e�ector. Decomposition
of the commands at the assembly level results in a se-
quential list of device-level commands. The functions

associated with each device are taken directly from
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the requirements. Access to this level requires more
expertise on the part of the supervisor and involves

less automatic checking by the software.

The component level re
ects the hardware ca-
pability of the current system. Each of the device
commands, such as the end-e�ector install com-

mand (INSTALL) decomposes into individual actu-
ator commands (e.g., CLOSE, LOCK, EXTEND)
which are the basic tasks performed by the hard-
ware. Sensor checking and veri�cation occurs af-

ter execution of each component command. This
level is dependent on the speci�c devices used and
could change if the hardware changes|an impor-

tant aspect to consider in the software design and
implementation.

Menu Interface

A menu-driven, rather than a command-driven,
interface is used in an e�ort to reduce the number of
commands at each level and the amount of internal

system information presented to the supervisor. The
menu-driven command structure also accommodates
relatively inexperienced supervisors. Figure 7 shows

the basic menu layout for the system; the layout
was derived directly from the design in �gure 6.
The menus re
ect the actions required to control the
hardware and assembly process.

Each box represents a menu on the supervisor's
display. Menu selections can be designated by ei-
ther the number or the �rst unique characters of the
command. The lines between boxes indicate how a

supervisor traverses the various levels of the system.
Every menu contains \help" to aid inexperienced su-
pervisors by providing information about each selec-

tion. As a selection is made, the item is highlighted.
The menus are overlapped on the screen as they are
selected (�g. 8) to provide the supervisor with infor-
mation from every level. Everything entered by the

supervisor is recorded in a journal �le that is avail-
able for post-test analysis.

Command Decomposition

The main menu (�gs. 7 and 8) displays the four
major components of the system. Selection 1 (Sys-

tem con�guration) allows the system con�guration
parameters and variable status to be displayed and
modi�ed. Selection 2 (Auto build) initiates auto-
mated assembly according to a predetermined as-

sembly sequence contained in a prede�ned assembly-
sequence �le. Selection 3 (Assembly functions) allows
access to the manual command mode, which provides

the supervisor with command capability at all levels

of the automated system. Selection 4 (File manipu-
lation) permits selection and editing of an automated

assembly-sequence �le or a command �le; these �les
are discussed in the following section.

Selection 3 reveals subsequent hierarchical menus
in which higher level menu commands are compos-

ites of lower level menu commands. The lowest level
menus are the component-oriented commands that
are directly associated with the hardware of the sys-
tem. All commands incorporate internal, automatic

checking to protect the hardware from supervisor-
controlled commands that could result in hardware
damage. As the supervisor works down the menu

hierarchy, control and responsibil ity shifts from the
automated system to the supervisor. The lower level
menus rely on supervisor expertise; therefore, many
of the lowest menu levels and some error menu selec-

tions are password-protected or have hidden menu
options.

The composite commands are higher level menu
entries that initiate a sequence of commands to per-

form the selected task. Figure 9 illustrates compos-
ite command Fetch and connect. As each command
is executed, the associated menu is displayed and

highlighted. This layered menu presentation allows
the supervisor to monitor the sequence of hierarchi-
cal commands and provides a trace to aid in error
recovery.

An error-recovery menu is displayed to the su-
pervisor when sensor checks indicate that a system
component did not function properly. The system
will not proceed until the problem is resolved. If

a problem cannot be corrected, error information is
passed back through the system hierarchy and causes
the commanded actions to reverse their task.

Supervisor Input Modes

There are three modes of supervisor input: direct
keyboard, command �le, and assembly-sequence �le,

as de�ned in the requirements. The keyboard input
mode requires the supervisor to enter each menu se-
lection from the keyboard. The command-�le mode

allows the supervisor to create a text �le of the com-
mands as they would be entered in the keyboard in-
put mode. The system obtains its input from the �le,
so that the supervisor is freed for monitoring. This

freedom is particularly helpful for repetitive tasks.
A command �le is executed through selection 4 (File
manipulation) from the main menu. This menu also

allows the supervisor to create a command �le (Build
command �le) and modify an existing command �le
(Edit command �le) without exiting the program.
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Limited on-line correction of the command �le is
available when an illegal command is encountered.

Execution is suspended and the command-�le error
menu is displayed, as shown in �gure 10. The current
line in the command �le, the command containing
the error, the next command, and a list of actions

available to the supervisor are displayed. In the
example shown, the current command �le contains
an incorrect command. The supervisor should pick

selection 1 (Correct current command) and will be
prompted to enter a new command. After correcting
the command �le, the supervisor can execute the �le
two ways. Selection 2 (Re-execute current command)

will execute the corrected command, increment the
command �le to the next line, and return to the
command-�le error menu. This option allows the

supervisor to insert commands and execute them
one by one. The second way to initiate execution
is by picking selection 3 (Continue execution with
current command). This option starts executing at

the corrected command, continues execution from
this point, and exits the command-�le error menu.
This option is similar to selection 4 (Execute the next

command and continue), but this option begins at
the next command and skips execution of the current
command.

In situations where many commands need to be
modi�ed, it may be more e�cient to abort the

command-�le execution mode and edit the command
�le. The command �le may be edited without exit-
ing the program by selecting main menu item 4 (File

manipulation).

The third input mode, an assembly-sequence �le,
executes like the command-�le mode, but the format
is independent of the actual commands entered. The
format is simpli�ed and the software converts the

�le into the commands required by the system. The
assembly-sequence �le format is as follows:

Assemble

strutname a

strutname b

.

.

Disassemble

strutname c

strutname d

.

.

End

The supervisor has the option of creating and modi-

fying these �les without exiting the system.

Robot-Arm Path Design

The robot arm has three tasks to perform:
(1) traverse strut paths for installation and removal ;

(2) transfer trays between the working and storage
canister; and (3) change the end e�ector. Transfer-
ring trays and changing the end e�ector are fairly

straightforward tasks. Traversing the strut path is
more complex because of the intricate orientations
necessary to locate the strut in the structure without
interference from previously installed struts. Robot-

arm tasks are detailed in the following sections.

Logic of Strut Path State

The robot-arm path from the strut storage canis-
ter to the structure and return has been divided into

segments or path states. The exact path traversed
depends upon the current strut location in the struc-
ture. The state is the current coordinate location of
the robot arm (X, Y , Z , Roll, Pitch, Yaw). The

states de�ned for this study are illustrated in �g-
ure 11 (GP CAN, AP CAN, IP, AP, and GP). This
il lustration typi�es the simplest sequence of moves

required to carry a strut between the canister and
the structure.

The robot-arm rest position and the point at
which it begins a strut retrieval is located immedi-

ately above the canister and is designated the can-
ister approach point, AP CAN. The strut is picked
up at the canister grasp point, GP CAN, and car-
ried back to AP CAN. A transition point, IP, is

passed through before the strut is carried to the
structure approach point, AP. The transition point
is where a transition occurs from a canister-oriented

path, which involves a tray and slot number, to an
installation-oriented path that is dependent on the
strut location in the structure. The approach point
is approximately 4 in. from the grasp point at the

structure, GP, where the strut is actually installed.

Figure 12 is a complete diagram of the robot-arm
state paths, including capture operations. The �g-
ure indicates the strut installation and removal cases,

which determine the various paths, as well as con-
ditions for performing end-e�ector actions. Condi-
tional states, denoted by dashed boxes, from AP to

GP are special cases required for various strut can-
tilever conditions. The conditional state positions en-
able the robot arm to capture cantilevered struts and
avoid collisions with node receptacles while lining up

the strut at its location in the structure. The states
are represented by solid boxes, and the arrows be-
tween the states represent transitions between states.

End-e�ector receptacle �nger actions, as shown by
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the ovals, are required at various points along the
path sequence. The robot arm passes sequentially

from one state to the next when moving between
the canister and the structure. The arrowheads in-
dicate the directions allowed between states, condi-
tional states, and end-e�ector actions. The only time

the system can terminate between states is when a
hardware failure occurs.

When determining the required path from state to
state, the paths with conditions are considered �rst.
The unconditioned path is taken only when none of
the conditions for capture operations are met. Cases

exist for which the reverse conditions do not mirror
the forward path. When the robot arm is following
a path through a sequence and a reverse is initiated,
the arrowheads are followed. If no arrowhead points

in the reverse direction along the path, a new path is
determined by continuing until a state or conditional
state is reached that contains an arrowhead in the

reverse direction.

The path between AP and GP is dependent on
the installation or removal case, as speci�ed by end

conditions of the strut. Struts that attach to �xed
nodes and those that are attached at only one end
proceed directly from AP to GP (direct installation
case). Struts that must capture previously installed

cantilevered struts move through points CAP1 and
CAP2 to perform the capture maneuver (capture-
sequence installation case). Receptacle �ngers are

closed at CAP1 to capture the node, and for those
installations that require the capture of two nodes,
receptacle �ngers on the opposite end of the end e�ec-
tor are closed at CAP2. The struts that capture only

one node also travel to a CAP2 point but do not close
the �ngers before proceeding to GP. Maneuvers that
capture the node of a connected pair of cantilevered

struts perform the capture at a point called TRIPOD
(pyramid installation case). The newly connected
strut completes a pyramid con�guration.

The struts that are attached only at one end
are left cantilevered, and gravity causes them to sag
when they are released by the robot arm. The robot
arm must move to the de
ected points before re-

leasing these struts to avoid entangling the recep-
tacle �ngers on the node receptacle. The same is
true when removing the strut. A set of points des-

ignated REM1 and REM2 are used for cantilevered
struts (free-removal case). The consistency of strut
de
ections makes it possible to use predetermined
points for the capture and remove (CAP, REM) lo-

cations. The gravity-induced strut de
ections and
predetermined points are not viable in space appli-
cations. De
ections in the zero-gravity environment

are smaller, but are in random directions; this ran-

domness dictates the use of sensors such as machine
vision. However, the concept of robot path segments

for retrieving combinations of struts and nodes and
for avoiding previously installed node receptacles is
still valid.

The supervisor may interrupt a move at any
point. A supervisor pause stops the robot arm

immediately and displays a pause menu on the screen
(�g. 13). The supervisor can then proceed from the
point of interruption, adjust the robot-arm position,

or return to the originating state. The supervisor
must be aware that this originating state is not the
previous state in the path, but the originating state
of the sequence. For example, if the robot arm is

currently at AP CAN and commanded to move to
GP, a pause-reverse requested at AP causes it to
return to AP CAN. The robot-arm motion may be

paused and reversed as many times as the supervisor
desires, this process acts as a toggle to change the
robot-arm direction.

Logic of Tray Path State

The tray path states are less complicated than

the strut path states. Figure 14 illustrates the
four states for tray storage (TRAY, TRAY AP,
STORAGE AP, STORAGE). To move a tray from

the working-tray canister to the storage-tray canis-
ter, the robot arm must �rst move from the approach
point to the working-tray canister (TRAY AP). The
robot arm then moves down to the tray grasp point

(TRAY) and picks up the tray exactly as if it were
acquiring a strut. The tray is carried back to the ap-
proach point (TRAY AP) and then to the storage-

canister approach point (STORAGE AP), which is
located at the top of the storage canister. The
tray is then moved down to the storage grasp point
(STORAGE) and is released in the same manner as

a strut being placed in the canister. After releasing
the tray, the robot arm retraces its path back to the
working-canister approach point and is ready to re-
sume strut installation. To retrieve a tray from the

storage canister, the same path is followed, except
that the pickup is performed in the storage canis-
ter and the release in the working canister. There

are only two tray operations: storage and retrieval.
Once an operation is selected, execution proceeds se-
quentially with no decision points.

Logic of End-E�ector Change

The path logic followed for changing the end

e�ector is the same as that for moving the trays.
The end-e�ector storage approach point, the actual
storage grasp point, the retrieval approach point,

and the retrieval point are predetermined locations.
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The robot arm �rst proceeds to the storage approach
point and then to the storage grasp point. After

disengaging the end e�ector, the robot arm returns
to the storage approach point and then proceeds to
the approach point of the end e�ector to be retrieved.
The robot arm then continues to the retrieval grasp

point, attaches a new end e�ector, and returns to the
retrieval approach point.

Motion-Base and Collision-Avoidance

Design

The current motion-base controller commands
move in a sequential manner, one axis at a time.

The x, y , and � positions associated with a partic-
ular strut installation are either obtained from pre-
de�ned locations or input by the supervisor. Before

any motion-base repositioning is initiated, a collision-
avoidance algorithm is executed to determine the or-
der of sequential moves that will prevent collisions
with the structure. A new axis move is initiated only

after the previous move is complete.

The supervisor may intervene and pause at any

time during the move sequence. In the paused condi-
tion, the options are to continue, adjust, or reverse.
The adjust accepts an intermediate set of positions
from the supervisor. When reverse is selected, a re-

trace of the forward sequence is executed.

The collision-avoidance logic determines the order

in which carriage moves must be performed to pre-
vent the carriage and robot arm from colliding with
any part of the structure already assembled on the
turntable. Collisions can occur during x-axis moves

when traveling toward the structure, and during car-
riage y-axis moves and turntable rotations if the car-
riage is positioned too close to the existing structure.

For x-axis moves, collisions occur between the car-
riage and the installed bottom-face struts. For y-axis
and turnable moves, the elbow of the robot arm and
the handles of the empty trays that protrude from

the storage canister are the two potential collision
points. (See �g. 2(a).) A set of tests are used to ex-
amine each of the two potential collision points. Only
the installed core struts (those which connect the top

and bottom faces of the truss structure) are consid-
ered for collision because they are at the same height
as the elbow and tray handles. All calculations for

collision avoidance are performed on-line prior to the
installation of each strut.

Figure 15 de�nes the nomenclature to be used in

the discussion of the collision-avoidance problem. As-
sociated with each strut is the point where a collision
can occur (strut end point) and the angle �strut be-

tween the radius of this pointRstrut and the turntable

x-axis reference line. Collision avoidance is discussed
for an x-axis move, a y-axis move, a turntable rota-

tion, and a combination of y-axis move and turntable
rotation. The y-axis move and turntable rotation
algorithms are applied twice|to check for potential
collision problems with the robot-arm elbow and then

with the tray handles. The following text outlines the
algorithm used for collisions that may occur with the
elbow.

Logic for x-axis move. The x-axis carriage moves
are not a primary concern in collision avoidance be-
cause of the structural con�guration of Automated

Structures Assembly Laboratory. The use of the pre-
de�ned points guarantees the proper clearances. The
x-axis move algorithm is only necessary when the su-

pervisor has requested direct access to the motion
base and has thereby manually entered the coordi-
nates. Collision avoidance is performed for x-axis
moves that position the carriage closer to the struc-

ture. An x-axis collision occurs when any installed
bottom-face strut intersects the new carriage posi-
tion. When this happens, the move is illegal and not

performed by the system.

Logic for y-axis move. Figure 16 illustrates the
collision-avoidance algorithm for a y-axis carriage

move. The radius of a potentially obstructing core
strut Robs is the distance from the center of the
turntable to the end of the strut farthest from the
turntable. This radius is represented by a line ex-

tending from the turntable center. The desired or
next position of the carriage is depicted in the �gure
by dashed lines.

Two tests are performed to identify potential col-
lisions. In the �rst test, the smallest absolute an-
gle (�g. 16) is computed between the x-axis refer-

ence line and the obstructing strut �obs , the current
robot-arm radius �start, or the desired robot-arm ra-
dius �end . When the angle of the strut radius lies
outside the robot-arm angles, the move can be per-

formed (case 1). When �obs lies between the two an-
gles formed by the robot-arm radii (cases 2 and 3),
a collision may occur and a second test must be

performed.

In the second test, a new carriage radius Rcarr is
computed and the carriage location is assumed to be

at the point of the obstruction. The carriage radius
is depicted in the �gure by the bracket and the radius
of the obstruction Robs is the length to the dot. This
new radius is then compared with the strut radius of

the potentially obstructing strut. If the strut radius
is less than the carriage radius (case 2), the move
can proceed. When the strut radius is greater than

the carriage radius, corrective action must be taken
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(case 3). Before the move can proceed, the carriage
must be moved back in the x direction. The distance

of this move, with a safety factor, is computed from
the length of the strut radius and the angle of the
obstruction as follows:

xdistance = Robs cos (�obs)

Logic for turntable rotation. Figure 17 illustrates

the collision-avoidance algorithm for a turntable ro-
tation. In case 1, the strut radius Robs is compared
with the carriage radius Rcarr. If the strut radius is

greater than the carriage radius, the turntable rota-
tion direction is examined, as in case 2. The angles
are calculated for �carr, �start, and �end. The angles
are compared, and the turntable can be rotated if

�carr > �end and �end > �start. Otherwise, case 3 gov-
erns, and the carriage must retreat in the x direc-
tion before performing the move. The distance of

the x-axis move is computed in the same manner as
that for the y-axis move as follows:

xdistance = Rstart cos(�carr)

Logic for combination y-axis and turntable rota-

tion. A scenario is assumed in which the y move

occurs before the turntable rotation. If no retreat in
the x direction is necessary, the move is completed;
otherwise, a turntable rotation followed by a y-axis
move is considered. If this combination proves col-

lision free, it is executed. When a retreat in the
x direction is necessary for both combinations, the
combination is performed that produces the smallest

move in the x direction.

End-E�ector Design

Initially, the end-e�ector task was to generate

actuator command sequences for the four assem-
bly functions (INSTALL, REMOVE, ACQUIRE,
DROP) and to monitor sensor output. However, op-
erational experience established a need to provide

e�ective error recovery. Error-recovery techniques
were developed as the error sources were identi�ed
during actual assembly operations. The need for the

pause and reverse capability for the supervisor, and
the ability to reverse following an unresolved error,
signi�cantly complicated the sequencing algorithm.
Much more software was required to implement these

functions than was originally anticipated.

End-E�ector Component Commands

The end-e�ector component commands control

the actuators and are the lowest level accessible to

the supervisor. The end-e�ector hardware is shown
in �gure 5(b). The end-e�ector component com-

mands and a brief explanation of each task follow:

OPEN/CLOSE Commands the recep-

tacle �ngers to open or
close

EXTEND/RETRACT Commands a pneumat-
ically actuated plat-

form to be extended or
retracted pushing or
pulling a strut

LOCK/UNLOCK Secures or releases the
strut to or from the

structure

LATCH/UNLATCH Commands a pair of
strut holders to close
or open around the
alignment and grasp

adapters located on
the strut

There is a set of receptacle �ngers on each end
of the end e�ector and a locking nut on each end
of the strut. Therefore, the OPEN/CLOSE and

LOCK/UNLOCK commands can be executed indi-
vidually for the left side and the right side. The end-
e�ector platforms and strut holders on both ends of
the end e�ector work simultaneously.

Each of these elemental component commands
implies a self-contained task that is performed by

the end-e�ector software. The component sensors
are checked prior to issuing actuator commands, and
the software issues the command when the status is

not in the desired state. Assembly proceeds if sensor
checking indicates that the operation was successful;
otherwise, an error is returned and the software is
suspended at this point until the error is resolved.

End-E�ector Functions

The operational sequences for the end-e�ector as-

sembly functions are described in this section. These
functions represent the device-level end-e�ector com-
mands and are made up of a sequence of component
commands. The functions and a brief explanation of

each task follow:

ACQUIRE Picks up a strut from the tray
and retains it in the end e�ector

DROP Puts a strut into the tray and

releases it from the end e�ector
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INSTALL Inserts and locks a strut into the
structure

REMOVE Unlocks a strut and removes it
from the structure

The component commands are shown in �g-
ures 18(a) to 18(d) for the device-level commands

discussed in the preceding paragraph. Figure 18(a)
shows the sequence for the ACQUIRE command.
The column on the left lists the sequence of end-

e�ector component commands and robot-arm com-
mands that perform the function. The right col-
umn, reading up, contains the sequence to reverse
the ACQUIRE command. The reverse sequence is

not the opposite of the forward sequence.

The �rst component command issued in the
ACQUIRE sequence is to UNLATCH the strut grip-

pers as a precautionary or safety feature. Next, the
platform EXTEND is executed and is followed by the
automatic force-torque algorithm (BALANCE FTS)
to accurately align the end e�ector with the strut be-

fore the strut holders LATCH. A second BALANCE
is executed after the LATCH, so any alignment er-
rors that occur during the LATCH are relieved and

the strut pulls smoothly from the canister during the
platform RETRACT. At this point, the ACQUIRE
sequence is complete and the status is updated to
re
ect the fact that the end e�ector is now carrying

the strut.

A pause capability is available for all end-e�ector
functions and may be initiated at any point in the

sequence. When the supervisor pauses, the pause
menu is displayed ; at this point the supervisor can
resume operation by either continuing with the next

step or initiating the reverse sequence. The sequence
may be repeatedly reversed.

The implementation of the other three end-
e�ector functions (DROP, INSTALL, and REMOVE)

is similar to the ACQUIRE implementation, and
their command sequences are shown in �gures 18(b)
to 18(d).

Error Recovery

Error conditions detected by sensors are reported
to the supervisor for selection of error-recovery ac-

tions. Two types of actions are possible|the end-
e�ector actuators can be manipulated, or the robot
arm can be repositioned to permit the component
to function properly. The robot-arm motions are ei-

ther supervisor-controlled adjustments in robot-arm
position or products of the automatic force-torque
algorithm. All error-recovery actions are selections

from menus speci�c to each particular error, with the

exception of the the force-torque algorithm, which
is automatically invoked by receptacle-�nger closure

errors.

An error menu is displayed whenever an end-
e�ector component fails to function properly. Selec-
tions in each of the component errormenus have been
determined through experience. The error-recovery

menu for the receptacle �ngers (grippers) is shown
in �gure 19. Each error menu has an exit selection
(Quit) which allows termination without correction

of the component error. This exit results in an auto-
matic reversal of the action of any end-e�ector func-
tion currently in progress. The error menu contains
a hidden option (Go on anyway) and is only available

when the supervisor uses a password. This option is
selected if the supervisor considers the error to be of
minimal consequence and decides to assume respon-

sibility and continue the assembly operation. The
system interprets this response as if the error were
corrected.

There are three ways to exit the error-recovery
routine. An automatic exit results upon successful

resolution of the error. The other exit conditions
(Quit and Go on anyway) are supervisor-controlled
as discussed above. The software remains in the er-

ror routine until one of these conditions occurs. For
the recovery options, the status of the problem com-
ponent sensor is checked to determine whether the
recovery action was successful. The POP command

is used when the locking nut socket is not seated.
The slight turn helps to align the socket with the
nut. Descriptions of the recovery options are listed

below:

CYCLE Reverses the command
and then reexecutes it

TOGGLE Reverses the command
that failed

LATCH ANYWAY Latches the strut

gripper, even if the
grippers are not closed
on a strut

UNLATCH ANYWAY Unlatches a strut from

the end e�ector

CW POP Turns the nut-driver
motor one quarter turn
in a clockwise direction

CCW POP Turns the nut-driver

motor one quarter turn
in a counterclockwise
direction
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DITHER ARM Moves the robot arm
through small cyclic

motions in a particular
direction in an attempt
to jar loose a stuck
component

BALANCE FTS Reduces the loads on a
component by slightly

repositioning the robot
arm

ADJUST Manual repositioning

of the robot arm by
the supervisor

Data Content and Modi�cation

The assembly system conditions are stored in a

shared data base, which contains two basic types
of information|the current status of all elements
of the assembly system and structure, and the pre-

determined positions that are used to direct and con-
trol the robot arm and motion bases. The current
status information ismaintained continuously to rep-
resent the physical state of the system at any point

in time and to thus ensure continuity of systemoper-
ations. The status is updated automatically during
test runs. The predetermined position information
for the robot arm and motion base includes loca-

tions and orientations that are associated with the
installation of individual struts. The predetermined
position information also describes the collision-free

paths that the robot arm and motion base follow be-
tween the canister and the various installation posi-
tions in the truss.

Data Description

Figure 20 illustrates the data section that is bro-
ken down into the following elements: motion-base

position, strut type, robot-arm status, tray status,
tray handle locations, current strut status, current
motion-base position, and end-e�ector status.

The MOTION BASE POSITION record stores

the x, y , and � values (X Car, Y Car, and Turntable)
for the predetermined motion-base locations that
establish the positioning relationship between the

robot arm and the truss. There are 70 unique
motion-base positions for the 102-member truss. In
an attempt to minimize motion-base moves, many
struts are installed with the motion base situated at

the same position. Also, the 120� rotational symme-
try of the structure allows the x and y carriage po-
sitions to be repeated for comparable struts at three

locations around the structure.

The STRUT TYPE record contains all the data
necessary to describe the installation and storage

conditions for each of the 102 strut members. Each
strut is identi�ed and accessed by a unique alpha-
numeric designation (Name). The current location
of the strut (Where) is accessed by the system before

any strut operation can be initiated. The system
must know if the strut is currently in its tray, in-
stalled in the structure, or held by the end e�ector.

When a strut is selected for installation, the system
refers to a list of struts (Connect To), which de�nes
those struts that must be installed in the truss prior
to installation of the selected strut. This check is a

safety feature to ensure that the required initial con-
ditions for installation of the selected member are
satis�ed. The secondary reference to the location

status (Where) of each strut on this list certi�es that
all required struts are installed. The installation po-
sition (Loc In Cell) identi�es which of the 19 pre-
determined paths is to be followed to install or re-

move a strut. The end of a strut with a preattached
node (Node End) indicates which nut driver on the
end e�ectormust not be operated while installing the

strut. If the end e�ector must capture another node,
the end to be captured is speci�ed (Cap End). The
end condition of the installed strut (Cantilever) is
used to establish prede�ned modi�cations to the path

which must occur during the capture sequence. Be-
cause of tray packing limitations, a preattached node
may not be located on the correct end associated

with a direct path entry. This condition is identi�ed
(Flip) and initiates a robot-arm command to rotate
the strut 180� at the transition point in the strut in-
stallation path. The assigned tray and slot positions

(Tray, Slot) are required to replace or insert a strut
in the tray. Each state in the prede�ned path de�nes
the robot-arm positions (State Pos). The collision-

avoidance algorithm requires that the end position
of the core struts (X End, Y End) be de�ned for
computation of potential collision conditions.

The ROBOT STATUS record contains the cur-
rent positioning point for all strut paths (State,

Cond State). The current strut in the robot
arm (Strut Now), the strut in the canister to be
retrieved (Strut Getting Now), or the last strut

that was installed or removed by the robot arm
(Strut Just Had) are represented in this record.

The TRAY STATUS record maintains all infor-
mation pertaining to the strut storage trays. The
path-state identi�er (Tray State) and the objective

of the move (Tray Mode) are used to store or retrieve
a tray. The number of the tray (Current Tray) that
struts are being removed from or stored in is also

maintained. The approach points to the working
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canister (Working Ap) and to the storage canister
(Storage Ap) are available in this record.

The TRAY HANDLE LOCATIONS record con-

tains the tray handle position in the working and
storage canisters utilized by the robot arm when
transferring them from one canister to the other. The
positions (Storage Loc, Working Loc) are the sets

of x, y, z , roll, pitch, and yaw needed by the robot
arm.

The CURRENT STRUT record contains infor-
mation pertinent to the end e�ector for the strut
that is currently held by the end e�ector. The sta-

tus variables indicate whether the nut-driver sock-
ets are seated to lock or unlock the joint connec-
tor (Left Seat, Right Seat) and indicate the current

status, locked or unlocked, of the joint (Left Nut,
Right Nut).

The CURRENT MOTION BASE POSITION
record stores the currentx, y, and � (X Car, Y Car,
and Turntable) positions of the motion bases.

The END EFFECTORrecord maintains the cur-

rent status of the various components on the end ef-
fector. The status of the receptacle �ngers at each
end of the end e�ector (Left Receptacle Finger,
Right Receptacle Finger) indicates whether they

are open or closed. The position of the platform
(Platform) and the condition of the strut holders
(Latch) are also maintained. The last data item is

the location needed by the robot arm to store and
retrieve the end e�ector (Storage Pos).

Appendix C provides an example of the data
interdependence and how the data are used by the
software system to perform its functions.

System Data Modi�cation

Data examination and modi�cation is available

through selection 1 (System con�guration) on the
main menu (�g. 7). This selection provides a direct
method for accessing the status of any component
and evaluating current conditions. Upon selection of

this option, a menu displays the status of the robot
arm, current strut, and end e�ector. If the supervi-
sor needs to change a value, a selection of that item

in the menu results in a list of possible values. When
changing a value that a�ects other data items, the
supervisor is forced by the software to change them
all. For example, if the strut location is changed to

the robot arm, the end-e�ector status data must re-

ect that the end e�ector is latched to a strut. To
change the value of any data, the supervisor must

enter a password. This password protects the data

from haphazard modi�cations by inexperienced su-
pervisors and permits complete 
exibility in control

of variables for system setup and testing.

Software Design Evaluation

Four complete assembly and disassembly tests
of the 102-member truss structure have been con-
ducted. The supervised autonomy mode of operation

has proved e�ective and has allowed the supervisor
to correct almost all the assembly problems from the
console. The successful performance of this relatively

rudimentary research prototype is encouraging for in-
space assembly and construction.

The software program is a major factor in the
overall system success. The software design require-

ments have been met, and the software hierarchical
structure has remained essentially unchanged, while
continuing to support system evolution, especially for
error-recovery procedures and system upgrades such

as the end-e�ector microprocessor discussed in ap-
pendix A. The hierarchical structure agrees with the
NASA/NBS Standard Reference Model (NASREM)

architecture (appendix D) and �ts the assembly
problem well. A key factor in the success of the
program was a realistic representation of the sys-
temhardware and assembly procedures in data struc-

tures. This representation is di�cult to achieve and
requires detailed consideration of the assembly prob-
lem. The bene�ts of an expert system implementa-

tion (appendix A) in terms of development time and
code size are apparent.

Supervisor displays that depict the hierarchical
commands and assembly situation in real time ade-

quately provide status, context, and trace informa-
tion for monitoring and error recovery. No formal
human-factors studies have been performed, but an
excellent test-bed for evaluation studies exists. A

large proportion of the assembly software is con-
cerned with keeping the person in the loop, particu-
larly with providing full access and control at every

level.

Implementation of a distributed system architec-
ture and a teleoperator mode of operation needs to
be addressed. The assembly software is just begin-

ning to address a distributed systemarchitecture, but
no consideration has yet been given to task inter-
dependence and scheduling. On-line path and task
planning is necessary for a truly viable in-space ap-

plication to be possible. A teleoperator mode for
supervisor intervention is critical for in-space error
recovery, because the supervisor must have complete

control over the assembly operation at each level.
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Concluding Remarks

An initial version of an automated assembly sys-

tem for truss structures has been developed and is

currently operational. Experience gained during the

assembly and disassembly of a 102-member tetra-

hedral truss demonstrates successful performance of

the automated system and of the supervisor interface

used for monitoring and intervention. Based on this

experience, the software design, hierarchical struc-

ture, and internal data representation described are

typical of what is required for automated operations

and show promise for use in projected in-space as-

sembly and construction projects. The software re-

quirements and design serve as a model, as well as

a test-bed, for the development of software required

by more sophisticated automated systems.

The software design process emphasized the im-

portance of de�ning the interface requirements and

the role of the supervisor. The interface between the

automated system and the supervisor provides a con-

cise method of displaying possible command selec-

tions, access to all device levels, and current system

task execution and status. The supervised-autonomy

mode of operation makes system supervision from re-

mote sites, such as the ground, feasible. This mode

of operation minimizes the demand for limited astro-

naut resources.

Hardware test experience identi�ed unanticipated

but critical automated system capabilities, such as

the need to pause and reverse the assembly process.

The testing also underscored the value of a well-

informed supervisor in any automated operation.

NASA Langley Research Center

Hampton, VA 23665-5225

May 19, 1992
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Appendix A

Implementation

The assembly system is managed by several dig-
ital computers that are serially connected through
RS-232 communication lines. The administration,

assembly, and device levels (�g. 6), and the operator
interface functions reside on a minicomputer and are
implemented in FORTRAN. Component-level func-
tions reside on auxiliary computers. The software

design was developed independently of a computer
hardware con�guration and has been run on a num-
ber of di�erent computer arrangements. All commu-

nications are passed through the minicomputer, even
though functionally they might be issued directly
from one machine to another. The data passed be-
tween processors are written in ASCII format. This

human-readable format allows stand-alone checkout
to be performed on simple terminals.

The motion base is controlled by a commercial

indexer board hosted on an Intel 80286 based pro-
cessor. Commands to this processor are generated
by a BASIC program that serves only as a transla-
tor for the positioning commands. All the collision-

avoidance calculations are performed in real time on
the minicomputer.

The robot-arm motions and end-e�ector compo-

nent commands are controlled by a BASIC program
on a 68000 processor. The robot-arm processor stores
data locally (all the x, y, z , roll, pitch, and yaw po-
sitions) and describes the operational position de�-

nitions and paths used for the assembly operations.
This local data storage minimizes the amount of in-
formation passed between the processors.

Two major changes have been made to the ini-
tial implementation|a software language substitu-
tion and a computer hardware addition. As a re-
sult of the modularity of the design, the upgrades

were easily performed. The software change entailed
the development of the robot-arm, path-state logic as
an expert system; this system replaced the original

FORTRAN implementation. The computer upgrade
that was initiated involved moving the device and
component level for the new end e�ector to a micro-
processor. The device level of the current end e�ec-

tor resides on the minicomputer, and the component
level resides on the robot-arm processor. Both these
upgrades are discussed in more detail in the following

sections.

Expert System Implementation

Traditional programming languages such as FOR-

TRAN and BASIC are not well suited for encapsu-

lating the knowledge required for complex assembly
sequences. Preliminary investigations into the appli-

cation of expert system technologies to perform the
decision-making portions of the software system have
been very encouraging.

The Knowledge Engineering System (KES) ex-
pert system development tool was utilized in this
implementation (ref. 12). Rule-based, backward-

chaining techniques are applied to accomplish the de-
cision making or inferencing. A set of antecedent/
consequence (if/then) rules have been formulated
which capture knowledge pertaining to the path se-

lection for strut assembly and disassembly. These
rules, along with attributes and procedures, are con-
tained in a �le known as the knowledge base. Back-
ward chaining (goal-directed inferencing) applies de-

ductive reasoning to the speci�ed rules, whereby
a given conclusion follows directly from a known
premise.

The path from the grasp-point canister
(GP CAN) to the grasp-point (GP) is decomposed
into a number of individual states. (See �g. 12.) The

current location of the strut, the current location of
the robot arm, the type of strut being manipulated,
and the task speci�ed by the automated system or
the supervisor (via menu selection) are all factors in

determining the sequence of states that make up the
robot-arm path. Rules have been developed to im-
plement the state logic shown in �gure 12. These

rules determine the direction of the robot-arm mo-
tion and any necessary conditional states between
AP and GP. The direction of robot-arm motion is
determined from the current location of the robot

arm, the current status of the strut, and the task or
target state entered by the supervisor. Conditional
state rules are invoked when performing node capture

operations between AP and GP and are primarily de-
pendent upon strut cantilever conditions. Figure 21
contains examples of conditional state rules. Once a
move has been determined, forward inferencing is ini-

tiated to build the command string, which is sent to
the robot arm. The KES forward inferencing uses
event-driven procedural techniques that, like con-

ventional programming languages, were structured
sequentially.

This expert-system tool provides an embedding

technique for integrating expert systems with proce-
dural language code. The procedural code is able
to send, receive, and modify data from a knowledge
base through the use of run-time functions and spe-

cial data types. The embedding technique gives the
automated assembly system access to expert-system
techniques for decision making, but it leaves the ex-

isting operator interface intact. An expert-system
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solution to the path determination portion of the al-
gorithm was incorporated with little di�culty by uti-

lizing the existing menu structures and input/output
(I/O) handling capabilities.

The concise representation a�orded by the rule-
based expert system reduced the lines of code sig-
ni�cantly and increased the maintainability of the

software. Approximately 850 lines of FORTRAN
code were condensed into 20 simpli�ed KES rules.
Even during the early stages of the development,

modi�cations and upgrades were performed rapidly.
The success of the expert-system implementation
has prompted the application of these techniques
to other modules of the assembly-system software,

such as tray handling, error handling, and collision
avoidance.

End-E�ector Microprocessor

Implementation

All end-e�ector functions for the new end e�ec-
tor are now implemented on a microprocessor. This

end-e�ector software logic is implemented in the \C"
programming language on a Siemens SAB 80535 mi-
croprocessor. The development system selected is

ANSI C compatible and includes language exten-
sions that provide access to all processor-dependent

features. The SAB 80535 microprocessor supports
analog-to-digital conversion and bit I/O. The soft-

ware is responsible for both sequence control and sen-
sor monitoring for all end-e�ector operations. The
software maintains local data that describe the sta-
tus of the end-e�ector and sensor components on the

microprocessor.

The end-e�ector microprocessor implements the
device and component levels of the assembly soft-

ware. It decomposes the assembly-oriented device
commands (INSTALL, REMOVE, ACQUIRE, and
DROP) into component commands and monitors the
sensors. The microprocessor integrated easily into

the automated assembly system as a result of the
design hierarchy and modularity. By standardizing
these functions, multiple end e�ectors can be accom-

modated that perform similar functions, such as the
INSTALL, on di�erent entities. Thus, end e�ectors
that install struts and panels all look the same to
the automated assembly system. The end e�ector

on the microprocessor takes advantage of the experi-
ence gained in the baseline automated assembly op-
erations. Reference 13 contains additional details on

the end-e�ector microprocessor implementation and
software.
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Appendix B

Glossary

actuator device that applies force to move a mechanism

backward-chaining inferencing goal-directed approach of decision making; the pursuit of a goal may

require the determination of substates, which themselves may require

a subgoal solution

component any one of the end-e�ector hardware mechanisms

embedding combining conventional programming applications with an expert

system to form a single executable program

expert system a computer program that uses knowledge and reasoning techniques to

solve problems that normally require the services of a human expert

knowledge base �le that contains the facts and heuristics that represent human

expertise about a speci�c domain

knowledge-based expert system subset of the general area of expert systems in which an expert's

knowledge about a class of problems is maintained in one �le (knowl-

edge base); a separate reasoning mechanism operates on this knowl-

edge to produce a solution

RS-232 communication line a communications protocol for transmitting information between two

computers in a serial mode (one bit at a time)

rule-based expert system system that uses antecedent/consequence (if/then) constructs to

represent knowledge

degrees of freedom number of independent position variables that would have to be

speci�ed to locate all parts of a mechanism

supervised autonomy a mode of system operation in which operator attention or interven-

tion is required only when a problem has occurred that cannot be

corrected by the automated system

top-down design a methodology that begins by laying out an overall program structure

and successively de�ning lower levels in increasing detail
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Appendix C

Example of Data Accesses and Modi�cations

The following example shows how the data de�ned in �gure 20 are actually referenced and used by the

software. The actual menu items from �gure 7 are shown in bold. Only the forward execution of the command

stream is shown. No pause or reverse sequences are included. To keep the example as simple as possible, it

is assumed that everything passes the appropriate tests necessary to continue execution. The strut in this

example is of the direct installation case type.

Commands Data accessed

FETCH AND CONNECT:

Input strut name to fetch

Check data to verify valid name STRUT TYPE.Name

Verify necessary struts installed STRUT TYPE.Connect To

Update data ROBOT STATUS.Getting Now = Strutname

FETCH:

Verify no strut currently in robot arm ROBOT STATUS.Strut Now = NONE

Verify strut location STRUT TYPE.Where = CANISTER

Check access to tray; do one of the following:

1) Current tray contains strut STRUT TYPE.Tray =

TRAY STATUS.Current Tray

2) Next tray contains strut STRUT TYPE.Tray >

TRAY STATUS.Current Tray

ROBOT: (Move tray to storage)

MOVE TRAYS:

TO STORAGE: TRAY STATUS.Tray Mode = STORING

TRAY APPROACH POINT

Verify current state TRAY STATUS.Tray State

Move robot arm TRAY STATUS.Tray Ap

Update data TRAY STATUS.Tray State = TRAY AP

TRAY POINT

Verify current state TRAY STATUS.Tray State

Move robot arm TRAY HANDLE LOCATIONS.Working Loc

Update data TRAY STATUS.Tray State = TRAY

Pick up tray

Similar to ACQUIRE

Update data TRAY STATUS.Current Tray decremented by 1

TRAY APPROACH POINT

Verify current state TRAY STATUS.Tray State

Move robot arm TRAY STATUS.Tray Ap

Update data TRAY STATUS.Tray State = TRAY AP

STORAGE APPROACH POINT

Verify current state TRAY STATUS.Tray State

Move robot arm TRAY STATUS.Storage Ap

Update data TRAY STATUS.Tray State = STORAGE AP

STORAGE POINT

Verify current state TRAY STATUS.Tray State = STORAGE AP

Move robot arm TRAY HANDLE LOCATIONS.Storage Loc

Update data TRAY STATUS.Tray State = STOR
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Drop tray

Similar to DROP

STORAGE APPROACH POINT

Verify current state TRAY STATUS.Tray State

Move robot arm TRAY STATUS.Storage Ap

Update data TRAY STATUS.Tray State = STORAGE AP

TRAY APPROACH POINT

Verify current state TRAY STATUS.Tray State

Move robot arm TRAY STATUS.Tray Ap

Update data TRAY STATUS.Tray State = TRAY AP

TRAY STATUS.Mode = NONE

3) Exit

ROBOT: (Move robot arm to canister point)

STRUT POSITION:

CANISTER APPROACH POINT:

Verify current state ROBOT STATUS.State

Move robot arm STRUT TYPE.State Pos

Update data ROBOT STATUS.State = AP CAN

STRUT POSITION:

CANISTER GRASP POINT:

Verify current state ROBOT STATUS.State

Move robot arm STRUT TYPE.State Pos

Update data ROBOT STATUS.State = GP CAN

END EFFECTOR: (Pick up strut from tray)

ACQUIRE:

Verify strut currently in canister STRUT TYPE.Where = CANISTER

Check latches END EFFECTOR.Latch = LATCHED

UNLATCH STRUT

Update data END EFFECTOR.Latch = UNLATCHED

Check platform END EFFECTOR.Platform = RETRACTED

EXTEND

Update data END EFFECTOR.Platform = EXTENDED

CANISTER BALANCE

Check latches END EFFECTOR.Latch = UNLATCHED

LATCH STRUT

Update data END EFFECTOR.Latch = LATCHED

CANISTER BALANCE

Check platforms END EFFECTOR.Platform = EXTENDED

RETRACT

Update data END EFFECTOR.Platform = RETRACTED

STRUT TYPE.Where = ARM

ROBOT STATUS.Strut Now = Strutname

ROBOT STATUS.Getting now = NONE

ROBOT: (Move robot arm to canister approach

point)

STRUT POSITION:

CANISTER APPROACH POINT:

Verify current state ROBOT STATUS.State

Move robot arm STRUT TYPE.State Pos

Update data ROBOT STATUS.State = AP CAN
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CONNECT:

Verify strut currently in robot arm STRUT TYPE.where = ARM

Verify robot arm at canister approach point ROBOT STATUS.State = AP CAN

MOTION BASE: (Move motion base to

assembly position)

DEFINED LOCATION:

PICK LOCATION:

ASSEMBLY LOCATION: MOTION BASE POSITION.(X Car, Y Car,

Turntable)

Check current position CURRENT MOTION BASE POSITION

Perform collision avoidance STRUT TYPE.(X End, Y End)

Determine execution order

Move motion base

Update data CURRENT MOTION BASE POSITION =

MOTION BASE POSITION

ROBOT: (Check robot arm position)

STRUT POSITION:

Check current state ROBOT STATUS.State

END EFFECTOR:

COMPONENT COMMANDS:

(Open receptacle �ngers)

Verify receptacle �nger status END EFFECTOR.Left Receptacle Finger =

CLOSED

OPEN:

LEFT RECEPTACLE FINGER

Update data END EFFECTOR.Left Receptacle Finger =

OPENED

Verify receptacle �nger status END EFFECTOR.Right Receptacle Finger =

CLOSED

OPEN:

RIGHT RECEPTACLE FINGER

Update data END EFFECTOR.Right Receptacle Finger =

OPENED

ROBOT: (Move robot arm to grasp point

from canister approach point)

STRUT POSITION:

TRANSITION POINT:

Verify current state ROBOT STATUS.State

Move robot arm STRUT TYPE.State Pos

Update data ROBOT STATUS.State = IP

APPROACH POINT:

Verify current state ROBOT STATUS.State

Move robot arm STRUT TYPE.State Pos

Update data ROBOT STATUS.State = AP

GRASP POINT:

Verify current state ROBOT STATUS.State

Move robot arm STRUT TYPE.State Pos

Update data ROBOT STATUS.State = GP
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END EFFECTOR: (Install strut into structure)

INSTALL:

Verify strut currently in robot arm STRUT TYPE.Where = ARM

Verify receptacle �nger status END EFFECTOR.Left Receptacle Finger =

OPENED

CLOSE:

LEFT RECEPTACLE FINGER

Update data END EFFECTOR.Left Receptacle Finger =

CLOSED

Verify receptacle �nger status END EFFECTOR.Right Receptacle Finger =

OPENED

CLOSE:

RIGHT RECEPTACLE FINGER

Update data END EFFECTOR.Right Receptacle Finger =

CLOSED

BALANCE FTS (Balance the force and

torques)

EXTEND

Update data END EFFECTOR.Platform = EXTENDED

LOCK:

LEFT NUT

Verify left nut status CURRENT STRUT.Left Nut = UNLOCKED

Put socket over nut

Verify seating of nut

Update data CURRENT STRUT.Left Seat = SEATED

Lock nut

Update data CURRENT STRUT.Left Nut = LOCKED

LOCK:

RIGHT NUT

Verify right nut status CURRENT STRUT.Right Nut = UNLOCKED

Put socket over nut

Verify seating of nut

Update data CURRENT STRUT.Right Seat = SEATED

Lock nut

Update data CURRENT STRUT.Right Nut = LOCKED

Check latches END EFFECTOR.Latch = LATCHED

UNLATCH STRUT

Update data END EFFECTOR.Latch = UNLATCHED

Check platforms END EFFECTOR.Platform = EXTENDED

RETRACT

Update data END EFFECTOR.Platform = RETRACTED

Verify receptacle �nger status END EFFECTOR.Left Receptacle Finger =

CLOSED

OPEN:

LEFT RECEPTACLE FINGER

Update data END EFFECTOR.Left Receptacle Finger =

OPENED

Verify receptacle �nger status END EFFECTOR.Right Receptacle Finger =

CLOSED
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OPEN:

RIGHT RECEPTACLE FINGER

Update data END EFFECTOR.Right Receptacle Finger =

OPENED

ROBOT: (Move robot arm to canister approach

point from grasp point)

STRUT POSITION:

Check current state

APPROACH POINT:

Verify current state ROBOT STATUS.State

Move robot arm STRUT TYPE.State Pos

Update data ROBOT STATUS.State = AP

TRANSITION POINT:

Verify current state ROBOT STATUS.State

Move robot arm STRUT TYPE.State Pos

Update data ROBOT STATUS.State = IP

Input the strut name to fetch

Check data to verify valid strut name

Verify necessary strut installed

Update data

END EFFECTOR: (Close receptacle �ngers of

all ends with no nodes)

COMPONENT COMMANDS:

Close side 1 receptacle �nger

Verify receptacle �nger status END EFFECTOR.Side 1 Receptacle Finger =

OPENED

CLOSE:

SIDE 1 RECEPTACLE FINGER

Update data END EFFECTOR.Side 1 Receptacle Finger =

CLOSED

Close side 2 receptacle �nger

Verify receptacle �nger status END EFFECTOR.Side 2 Receptacle Finger =

OPENED

CLOSE:

SIDE 2 RECEPTACLE FINGER

Update data END EFFECTOR.Side 2 Receptacle Finger =

CLOSED

ROBOT: (Continue robot arm move to canister

approach point)

STRUT POSITION:

CANISTER APPROACH POINT:

Verify current state ROBOT STATUS.State

Move robot arm STRUT TYPE.State Pos

Update data ROBOT STATUS.State = AP CAN
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Appendix D

Comparison With NASREM

Although the automated-assembly system soft-

ware is developed from the system requirements,

the resulting program structure closely resembles the

NASA/NBS Standard Reference Model (NASREM)

architecture (ref. 14). The NASREM architec-

ture is depicted in �gure 22, and the correspond-

ing automated-assembly software structure is shown

in �gure 23. The automated-assembly hierarchy

corresponds to the four lowest levels of NASREM.

For example, the NASREM primitive level can be

compared with the automated-assembly device level,

which includes the robot arm, the end e�ector, and

the motion base. (See �g. 6.) The NASREM

element-move level corresponds to the assembly level

in the automated-assembly hierarchy. Figure 23 in-

cludes only those functions at each level that are

needed in the automated-assembly application. Typ-

ical supervisor commands at each level and error-

recovery actions are included for completeness.

Hardware actions and sensor processing occur at

the component (NASREM servo) level. Error con-

ditions are resolved by either supervisor intervention

or automated actions at the component level. Un-

resolved errors are passed back through the hierar-

chy, and an automatic reverse of the tasks performed

at each level is initiated. For the assembly task, al-

ternative actions, which take the form of substituting

other struts for failed members, are available only at

the administrative level. A use of alternate struts

requires replanning the assembly sequence.

Aside from the component level, the only other

testing is performed at the assembly level. These

tests involve physically exercising the locking nut im-

mediately after a strut is picked up from the canister

to insure that it can be installed. Another test is

performed immediately after locking a strut into the

structure by attempting to retract the platform be-

fore unlatching in order to verify the integrity of the

joint lock. A failure of either of these tests would

result in the selection of an alternate strut.

The world model information base is updated

at two levels|the device level and the assembly

level. At the device level, the end-e�ector status

model is updated at the successful completion of

each component action. At the assembly level, the

truss-structure model and the storage-canister status

are updated with the installation or removal of each

strut.

The NASREM architecture provides good con-

ceptual agreement with the automated-assembly ap-

plication, although not all activities have an entry at

every level. The hierarchical model does provide a

particularly concise display for supervisor visualiza-

tion. The hierarchical structure is capable of sup-

porting several assembly operations by providing a

standard interface between the levels.
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